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a b s t r a c t 

Recent developments in the field of computer vision have led to a renewed interest in sketch correlated 

research. There have emerged considerable solid evidence which revealed the significance of sketch. How- 

ever, there have been few profound discussions on sketch based action analysis so far. In this paper, we 

propose an approach to discover the most distinctive sketches for action recognition. The action sketches 

should satisfy two characteristics: sketchability and objectiveness. Primitive sketches are prepared accord- 

ing to the structured forests based fast edge detection. Meanwhile, we take advantage of Faster R-CNN to 

detect the persons in parallel. On completion of the two stages, the process of distinctive action sketch 

mining is carried out. After that, we present four kinds of sketch pooling methods to get a uniform repre- 

sentation for action videos. The experimental results show that the proposed method achieves impressive 

performance against several compared methods on two public datasets. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

With the flourish of computer vision, sketch based technology

s becoming a rising star for multitudinous researchers all over the

orld. It is well acknowledged that sketch has an important prac-

ical significance. In the past few years, there have been numer-

us works tackling sketch related problems from different angles.

hey mainly focused on three areas, namely sketch based image

etrieval [1,2] and composition [3,4] , sketch based video retrieval

5,6] , sketch segmentation [7,8] and recognition [9,10] . Although it

s a widespread idea since the success of sketch based approaches

hat studying the sketch of visual elements is one of the most fun-

amental prerequisites for many vision applications, there is still

imited studies revolving around action sketch. 

We can probably find the trace of action sketch in the system

f sketch based video retrieval. But almost all of existing works

oncentrate on how to create a better algorithm for video clip

earching, departed from free-hand sketch queries which depict

he shape, color and movement of objects roughly [5] . Unlike any

f these sketch based video retrieval works, we do not seek to

chieve determinate mapping between input sketch and video. In

act, our problem goes retrograde in some ways, because we want

o transform action video into sketch. The progress of this issue be
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 powerful auxiliary tool for many works, such as action recogni-

ion, and retrieval [11,12] . 

Among these scarce groups associated with action sketch,

.Yilmaz’s work [13] is the most similar one to ours. They present

 method of action representation on spatio-temporal volume

STV) and differential geometric surface properties. How to rep-

esent action better for tasks like action recognition is what they

hased. Besides, the first premise they assumed is that object con-

ours for each action slice are given. In contrast, our work prin-

ipally seeks conversion between action and sketch which is one

tep ahead of action representation. 

In this paper, we propose a method of distinctive action sketch

ining for human action recognition. First of all, we generally ex-

lore the characteristic of sketch in action and build an applicable

ystem to discover the most distinctive action sketches possessing

ketchability and objectiveness. For action videos, sketches of each

lip can be well generated in real time. Combining these elabo-

ate sketches, we propose a distinctive ranking method of action

ketches. The top ranking sketches can typically represent the ac-

ion classes which they belong to. Among the obtained top rank-

ng sketches, we introduce an approach of feature pooling to get a

ew representation for action video. Then the new representation

ill be combined with local feature based representation such as

he improved dense trajectories with Fisher vector encoding. Fig. 1

ives the overview of our method. 

The main contributions of this work are summarized in three-

old: 

https://doi.org/10.1016/j.sigpro.2017.10.022
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(b) Primitive Sketch Generation

(c) Person Localization
(f) Feature Pooling

(d) Feature Representation

Action Sketching

D
istinctive A

ction Sketch M
ining

(a) Input

Fisher Vector

(e) Distinctive Ranking, Re-ranking

Linear SVM

[------------]

Fusion

[------------]

P
redicted L

abel

(g) Feature Fusion

(h) Action Recognition

Fig. 1. Overview of our method. (a) Input: action videos. (b) Transform each action frame to primitive sketch in real time by fast edge detection method [14] . (c) Locate 

person by Faster R-CNN [15] . (d) Represent sketches as feature vectors. (e) Discover the top distinctive action sketches through ranking and re-ranking. (f) Apply feature 

pooling on the top ranking sketches to get a new representation. (g) Perform representation-level fusion with improved dense trajectories with Fisher vector encoding. (h) 

Recognize action videos by a linear SVM and choose the prediction with highest score as the predicted label. 
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• We introduce sketch to the field of action recognition and pro-

pose a ranking based method to discover the most distinctive

action sketches. 
• We present a novel approach of action representation based on

four kinds of sketch pooling strategy. 
• Extensive experiments on two public human action datasets

are conducted to demonstrate the effectiveness of the proposed

method. 

The remainder of this paper is organized as follows.

Section 2 reviews the works related to our research.

Section 3 shows how to transform the human action to sketches.

Section 4 describes the distinctive ranking method of action

sketches. Section 5 introduces the approach of feature pooling for

action recognition. Section 6 presents the experimental results,

followed by conclusion in Section 7 . 

2. Related work 

As one of the most important research fields in computer vi-

sion, human action recognition has a wide range of applications,

such as human-computer interaction, video surveillance and robot

action control. In the past years, numerous approaches have been

proposed to understand and recognize human actions from differ-

ent angles and levels. Among these works, action representation is

a key step towards a good action recognition system [16] . In prac-

tice, a human action clip can be represented by different views or

features, such as motion, gradients, and shapes. The action sketch

we proposed can be seen as one kind of views. In this section, we

will give a brief introduction of feature representation for action

recognition and several other works closely related to our research.

For a wider range of studies on action recognition, we recommend

the insightful reviews [11,17,18] to interested readers. 
Traditional approaches for action recognition are mainly based

n single feature representation, such as local and global feature

epresentation [19–21] . Based on hand-crafted descriptors or neu-

al networks, these methods can achieve good performance. How-

ver, the problems of lighting and viewpoint changes, complex

ackgrounds and intra-class variations have made it very challeng-

ng to get a higher accuracy. To address this problem, many re-

earchers propose new representations which combine different

eatures together. In consideration of the particular characteristics

ossessed by different kind of features, some well-designed com-

inations are usually superior to the single feature representation.

hese methods can be classified into two groups, direct catena-

ion [22] and multi-view learning [23–25] . For direct catenation,

pace-time interest points (STIP) [26] and improved dense trajec-

ories (IDT) [27] are the most classic works. Under the standard

ag of visual words (BoVW) framework, Laptev et al. [28] demon-

trate the effectiveness of feature combination of the histograms of

riented gradient (HOG) descriptors and histograms of optical flow

HOF) descriptors computed for STIP. For IDT based representation,

ang et al. [27] catenate four descriptors (i.e., trajectory, HOG, HOF

nd motion boundary histograms (MBH)) coded by Fisher vector

nd obtain the state-of-the-art performance for action recognition

t that time. Different from direct catenation, multi-view learning

ased methods focus on exploring the relationship between dif-

erent features [29] and incorporate these heterogeneous feature

escriptors into one low-dimensional and compact representation

30] . Although this two kinds of works have explored numerous

nd diverse features, taking the sketch to represent action is a new

nd largely unexploited frontier. 

An early preliminary version of this work was published in [31] .

ompared to the earlier version, the biggest difference is that we

ropose a novel method of action representation based on sketch

ooling. We also replace the person detection method with the
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1 https://github.com/ShaoqingRen/faster _ rcnn 
tate-of-the-art Faster R-CNN [15] . Furthermore, we present a uni-

ed approach for distinctive action sketch mining. Among other re-

ated works, silhouette and skeleton are similar to action sketch.

he silhouette is usually a black-white image using the edges

o draw the outline of person or object. It is a critical research

edium in the field of human pose recovery. Typical approaches

f image-based pose recovery reconstruct 3D poses by the learned

apping function between 2D silhouettes and 3D poses [32–34] .

or human skeleton, it is composed of several rigid segments

hich are articulated by joints. The skeleton looks like a match-

tick man that forms the rough structure of a human body. By

odeling and classifying the temporal evolution of human skele-

on, human action can be recognized in a 3D feature space [35,36] .

nfortunately, both silhouette and skeleton are mostly applied in

D video sequences that require a sophisticated motion capture

ystem or effective depth sensors. For this reason, they cannot be

mplemented to the conventional human action videos while the

roposed action sketch does not have this limitation. 

. Action sketching 

When we talk about painting art, a sketch usually refers to a

uick and informal drawing done from real life. An excellent sketch

hould capture the essentials of a subject, which may be the over-

ll neurogram and characteristic details from a specific perspec-

ive. In a general sense, the only primary mission for static image

ketching is to hit the spot of greatest possible similarity of both

ominant lines. However, moving to action videos, the situation is

uite different in the aspect of object’s subjectivity. Meanwhile, it

s the key factor we need to consider. We implement appropriate

easures to satisfy the requirement in action sketching. 

.1. Primitive sketch generation 

In the previous works, Yilmaz et al. take the object contours

s their basic elements [13] . Admittedly, object contours may have

ome certain degree of ability to express the sketch of action.

onetheless, the ability is not enough to fully appear in the per-

on of action sketch. Beyond that, methods like trackability maps

37] and action templates [38] are also proposed to represent ac-

ion videos. Leaving aside the performances of these methods, the

utcome has identifiable differences as compared with the sketch. 

In our research, the primary character for sketching action will

e referred to as sketchability . Methods that meet the require-

ents of sketchability must be able to depict the full profile of

ubject similar to object contours and some other important de-

ails. It should be pointed out that the transformation between real

mage and sketch is immensely challenging [39] . This is not our

ork in this paper. A reasonable way is to select some appropri-

te representative edges for each action clip. To generate the prim-

tive sketch, we adopt the fast edge detection method proposed

y P. Dollár et al. [14] . In consideration of the structure underlie

ocal image patches, they presented a structured learning frame-

ork for local edge mask prediction integrated into random deci-

ion forests. In this stage, we can transform each action frame to

rimitive sketch in real time. 

.2. Person localization 

What we are talking about here is human-centered action

ideos. Of course, it can be easily extended to other types of sub-

ects. The most important characteristic of these videos is that the

ctions must be performed by a specific subject. We call this prop-

rty of action videos objectiveness . 

To capture the objectiveness in action videos, we use the

ethod called Faster R-CNN [15] as an accurate and efficient tool
or person localization. The Faster R-CNN depends on region pro-

osal network (RPN) that shares full-image convolutional features

ith the detection network, which makes it become the state-

f-the-art object detection network. In practice, we use the open

ourced code of Ren et al. [15] and the ImageNet pre-trained net-

ork released on their website 1 to detect the person in each

rame. Then we filter out the detections with too small size and

nsatisfied aspect ratio for better model detection. It is necessary

o note that this stage is completely independent of the stage of

rimitive sketch generation, so we can deal with this two pro-

esses in two parallel channels, which can provide significant run

ime savings. After that, we will get a corresponding sketch which

s only associated with the subject for every action clip when com-

ining these two stages together. 

. Distinctive action sketch mining 

It is generally known that there are discriminative and repre-

entative themes with semantic interpretation in a specific type of

hotos, such as city and landscape images [40,41] . Similarly, some

istinctive patterns also exist in different types of actions. While

he actions appear in the form of sketch, distinctive sketches will

orrespond to these patterns. Acquisition of these sketches can be

 significant assistant to many action related applications. In this

ection, we will present the details of the proposed method for

istinctive action sketch mining. 

.1. Feature representation 

Given a sequence of action sketches generated in the stage of

ction sketching, we must first find a fine feature representation

or every sketch. It is generally agreed that a deeper convolutional

eural network can describe richer semantic information of the

mage. However, the very deep network calls for large-scale labeled

raining dataset, which is not always available in research. Fortu-

ately, there are a handful of superior deep models for image clas-

ification from ImageNet large scale visual recognition challenge

ILSVRC). These deep nets are delicately designed and well trained

ith millions of images from ImageNet. Ali et al. [42] report that

he pretrained deep model from ILSVRC is able to get consistent

uperior results on a diverse range of tasks including scene recog-

ition, image retrieval, etc. Notably, the recent work of Sketch-a-

et proposed by Yu et al. [43] present persuasive evidence that

eep model is a super choice for representation of sketch. To get

etter representative features, we employ the VGG-19 Net [44] and

xtract features of each sketch from the fully-connected (FC) layer.

inally, the sketch will be represented by a feature vector X with

096 dimensions. 

.2. Distinctive ranking 

We want to discover these sketches which can distinctively rep-

esent a particular category of action. In other words, these distinc-

ive action sketches have to meet requirements of the following

wo aspects: a) sketches must be very representative in the class

hey belong to; b) they also should be diverse among the sketches

e selected. 

For the first requirement, we propose a distinctive ranking

ethod based on clustering. Among these feature vectors X of

ketches, we gather them into k clusters by k -means and get the

eature vectors Y of each cluster center. After that, all sketches are

https://github.com/ShaoqingRen/faster_rcnn
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ranked according to the distinctive score computed by 

S = 

∑ k 
i =1 d 12 (X c , Y i ) 

d 12 (X c , Y s ) 
, (1)

where d 12 refers to the Euclidean distance, X c and Y s are the fea-

ture vector of current sketch and the center of its cluster respec-

tively. 

In the fraction above, d 12 ( X c , Y s ) denotes distance between cur-

rent sketch and its cluster center. A smaller value means that the

sketch is more likely to represent the class it belongs to. On the

other hand, 
∑ k 

i =1 d 12 (X c , Y i ) indicates the sum of distance from the

sketch to every cluster center. A larger value shows that the sketch

is more diverse among these sketches. The scores by division be-

tween them can trap the degree of distinctive property. What we

want is that the most representative sketches have the highest or-

der. It can be represented by a function D of distinctive score max-

imization, which is formulated as follows, 

D = max 
θ

n ∑ 

i =1 

(n − i + 1) S θi 

= max 
θ

{
(n + 1) 

n ∑ 

i =1 

S θi 
−

n ∑ 

i =1 

iS θi 

} (2)

where θ is an array with n parameters that indicate the positions

to place each sketch, n means the number of sketches in an action

clip, and S θi 
denotes the distinctive score of the θ i th sketch. Only

when the value of S θi 
is greater than S θi +1 ( i = 1 , 2 , . . . , n − 1 ), the

Eq. (2) can get the maximal value. Given the distinctive scores of

all sketches computed by Eq. (1) , the first item of Eq. (2) equals to

a constant C . Hence the equation is converted to 

D = max 
θ

{
C −

n ∑ 

i =1 

iS θi 

}

= min 

θ

n ∑ 

i =1 

iS θi 

(3)

Now the maximization function of distinctive score becomes a pro-

cess to find the arrangement of sketches that can minimize the

value of Eq. (3) . To achieve this goal, all sketches are ranked in de-

scending order based on the distinctive scores. 

4.3. Re-ranking 

Distinctive ranking gives us an acceptable mining result of ac-

tion sketches, but it is coarse somewhat and has a potential short-

coming. From the top row of Fig. 2 , we can see an undesired phe-

nomenon that several similar sketches have close order. That is to

say, the ranked sketches cannot satisfy the second requirement of

distinctive action sketch. In such cases, a sectionalized re-ranking

approach is presented to overcome the shortcoming. 

In consideration of practical necessity and computation cost, we

limit the re-ranking process to a separate interval w of ranking or-

der. When the top m ranking sketches are the expected output,

we do re-ranking among double ranking sketches, i.e. the interval

w equals 2 m . For example, if we set m as 10, then we only need

to do re-ranking on the top 20 distinctive action sketches. At the

individual range, we iteratively find the most dissimilar one with

sorted sketches in the remaining samples. The procedure can be

formalized as: 

max 
p 

j−1 ∑ 

k =1 

√ 

d ∑ 

t=1 

(x pt − x kt ) 2 , (4)
here p = { j, . . . , w } , j marks the current position calling for re-

anking in the process of iteration, d means the dimension of fea-

ure vector X . The re-ranking process is designed to maximize the

iversity of action sketches obtained in the stage of distinctive

anking. Based on Eq. (4) , it can be written as 

 = max 
ϕ 

w ∑ 

j=2 

j−1 ∑ 

k =1 

d 12 (X ϕ j , X ϕ k ) , (5)

here ϕ is a new arrangement for the top w action sketches ob-

ained in the distinctive ranking stage, d 12 (X ϕ j , X ϕ k ) computes the

uclidean distance between feature vectors of the ϕj th and ϕk th

ction sketch. By combining Eqs. (3) and (5) , the process of dis-

inctive ranking and re-ranking can be unified into a max-min for-

ulation, 

ax 
ϕ 

min 

θ

n ∑ 

i =1 

iS θi 
+ 

w ∑ 

j=2 

j−1 ∑ 

k =1 

d 12 (X ϕ j , X ϕ k ) . (6)

ig. 2 shows an illustration of distinctive action sketch mining. Af-

er the operation of re-ranking on the sketches generated above,

he discovered action sketches are more distinctive and acceptable.

. Sketch pooling for action recognition 

After obtained the top m distinctive ranking sketches, the most

mportant task is to get a uniform representation for action videos.

he feature vectors of top m sketches for each video are donated

s { X ′ 
1 
, X ′ 

2 
, . . . , X ′ m 

} . Based on these vectors, our goal is to generate

 feature vector X 

′ ′ with the same d dimensions. 

 

′′ = [ x ′′ 1 , x 
′′ 
2 , . . . , x 

′′ 
d ] . (7)

We apply four kinds of feature pooling methods to achieve the

ask, respectively are average pooling, max pooling, min pooling

nd every pooling. For multi-class action classification, we imple-

ent these methods and want to find the most suitable one by the

valuation on public human action datasets. 

• Average pooling . The average operation is performed on the

front u feature vectors of top m sketches which is defined as

follows, 

X 

′′ = 

u ∑ 

i =1 

X 

′ 
i /u. (8)

In fact, it is taking the mean value of each dimension in the u

vectors as the new element x ′′ t of X 

′ ′ , 

x ′′ t = 

u ∑ 

i =1 

x ′ it /u, (9)

in which t = 1 , 2 , . . . , d. 
• Max pooling . It select the maximum value of the front u fea-

ture vectors which is defined as follows, 

X 

′′ = max X 

′ 
i , (10)

where i = 1 , 2 , . . . , u . Max pooling means that the new element

x ′′ t equals to the maximum value of each dimension, 

x ′′ t = max x ′ it . (11)

• Min pooling . On the contrary to max pooling, it chooses the

minimum value of each dimension, 

x ′′ t = min x ′ it . (12)

• Every pooling . The aim of every pooling is to produce the

chance of representing action video by a single sketch. It sim-

ply takes the u th feature vector as a new representation which

is defined as follows, 

′′ ′ 
X = X u . (13) 
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Fig. 2. Illustration of distinctive action sketch mining. Top row: top 6 ranking distinctive action sketches. Second row: results after re-ranking. Third row: original frames 

corresponding to the re-ranking results. 
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Table 1 

The number of train/test samples in KTH and 

UCF101 human action datasets after removing 

the videos that Faster R-CNN detect very few 

persons. 

KTH UCF101 

Split1 Split2 Split3 

Train 342 7708 7766 7805 

Test 181 3083 3025 2986 

Total 523 10,791 10,791 10,791 

t  
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t  
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Although the distinctive action sketch can express spatial infor-

ation very well, it has a big drawback of lacking temporal cues.

n order to solve the problem, we propose to combine the pool-

ng feature and improved dense trajectories (IDT) based features.

or representation-level fusion, we concatenate the feature vector

f action sketch and the normalized Fisher vectors of IDT descrip-

ors into a single one. The obtained feature vector will be further

ed into a linear SVM classifier for action recognition. 

. Experiments 

In this section, we describe the detailed experimental settings

nd show the results on two public human action datasets. We

rst introduce the datasets used for evaluation and their corre-

ponding experimental setup. Then we present implementation de-

ails of our experiments. After that, we evaluate the performance

f our method for action recognition and explore different factors

hat may impact on the final recognition accuracy. 

.1. Datasets 

We conduct experiments on two public datasets, respectively

re KTH [45] and UCF101 action recognition dataset [46] . The KTH

ataset is relatively simple while the UCF101 dataset is more com-

licated as it is a realistic action dataset collected from YouTube.

ome examples of video frames from the two action datasets are

llustrated in Figs. 3 and 4 . 

The KTH dataset consists of 600 video files in total and

ach class has 100 videos which have a uniform resolutions of

60 × 120 pixels. 2 The videos are collected from 4 different scenar-

os and evenly divided into six types of actions: walking, jogging,

unning, boxing, hand waving and hand clapping. We train mod-

ls on the training + validation set and report average accuracy for

valuation on the test set. 

The UCF101 dataset 3 has 101 action classes and can be di-

ided into five types: Human-Object Interaction, Body-Motion

nly, Human-Human Interaction, Playing Musical Instruments, and

ports. We perform evaluation according to the three splits of

raining and test as described in [46] and present exhaustive re-

ults on the dataset. 

Although Faster R-CNN is the state-of-the-art object detection

ethod, there still exists lots of action frames that it cannot de-
2 http://www.nada.kth.se/cvap/actions 
3 http://crcv.ucf.edu/data/UCF101.php 
ect or only detect very few persons. As person detection is a very

mportant part of our method, small number of sketches is not

nough to find the most distinctive action sketches. Considering

he practical needs and computational cost, we set the max num-

er of top distinctive action sketches m = 20 for each video. So the

ideos will be removed from the original dataset if the number of

erson detected by Faster R-CNN is less than the max number m .

able 1 gives the number of train/test samples in the two public

ction datasets after removing some videos. In the following parts,

ll experiments are conducted on the refined action datasets if not

pecifically stated. 

.2. Implementation details 

For IDT based features, we choose the combined descriptors

HOG + HOF + MBHx + MBHy) with default parameter settings

nd utilize the implementation of Wang 4 to extract features from

ction videos. Regarding the feature encoding, the Fisher vector

hich has shown empirically to give good results is adopted to

epresent the videos. For the training of Gaussian mixture model

GMM), we randomly sample a subset of 256,0 0 0 features to learn

MMS and set the mixture number K = 256 . Finally, the power

nd L 2 normalization are applied to normalize the obtained Fisher

ectors of each descriptor type. 

In the experiments, we take the linear support vector machine

SVM) which is very efficient in dealing with large data sets as the

ction recognition classifier. Specifically, we use the code of LIB-

VM implemented by Chang et al. [47] released on their website. 5 

n the case of multi-class classification, we adopt the one-vs-all ap-

roach and select the class with highest score. Besides, we also fix
4 http://lear.inrialpes.fr/ ∼wang/improved _ trajectories 
5 http://www.csie.ntu.edu.tw/ ∼cjlin/libsvm 

http://www.nada.kth.se/cvap/actions
http://crcv.ucf.edu/data/UCF101.php
http://lear.inrialpes.fr/~wang/improved_trajectories
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Fig. 3. Sample frames from the KTH human action dataset with six classes (columns) and four scenarios (rows) presented. 

Fig. 4. Sample frames of 8 action classes from the UCF101 dataset. From left to right, the first row: ApplyEyeMakeup, Biking, BlowingCandles, Diving. Second row: Haircut, 

HorseRiding, PlayingViolin, Surfing. 
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 = 100 as described in [27] which has shown good performance.

For different sketch pooling methods, we adopt 5-fold cross valida-

tion to find the best parameters u and m on the training set. 

6.3. Results of distinctive action sketch 

We implement our method of distinctive action sketch mining

on the six action class of KTH dataset. Fig. 5 shows examples of top

10 distinctive action sketches for each action class. The experimen-

tal results demonstrate that different action categories generally

have diverse distinctive action sketches (action patterns) and that

our method performs well in capturing these sketches. Through

these vivid action sketches, the actions can be distinguished con-

veniently and efficiently. Another point emerged from Fig. 5 is that

sketches of quick actions (walking, jogging, running) have more

obvious variations than the sluggish action (boxing, hand wav-

ing and hand clapping). Furthermore, we can find that there ex-

ist many similar patterns in different categories of action sketches.

Actually, it is coincident with the intrinsic property in actions, for

that sequences between various actions usually share some analo-

gous parts. 

In the process of distinctive action sketch mining, a very impor-

tant factor is the cluster computation by k-means. To analyze the
nfluence of cluster number on final results, we carry out several

xperiments using different cluster numbers on the KTH dataset.

ig. 6 shows some results of distinctive action sketches under dif-

erent cluster numbers. 

It can be seen that a small number of cluster class yields weak

istinctive action sketches. The reason is that a relatively small

luster number will make the results tend to on behalf of those

ketches occurred frequently. Along with the increasing of cluster

umber, we will get more similar distinctive sketches. It means

hat there is no need to apply a too large number of clusters in

ursuit of the results’ diversity. It not only cannot improve perfor-

ance but also will increase the computation cost. In the experi-

ent, we set the cluster number k = 10 . 

.4. Comparison of different pooling methods 

We test the performance of different pooling methods by tak-

ng the feature vectors after pooling as the input of action classi-

er. Because the vectors do not combine with IDT features, so we

an evaluate the pure performance when using them alone. Fig. 7

ives a comparison of the four kinds of pooling methods on KTH

nd UCF101 datasets. The parameter u in pooling process is vary-

ng from 1 to 20 while top m = 20 distinctive action sketches are
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Fig. 5. Examples of top 10 distinctive action sketches for each action class. From top to bottom, they are boxing, hand clapping, hand waving, jogging, running and walking, 

respectively. 

Fig. 6. Results of distinctive action sketches under different cluster numbers. Take the case of walking, from top to bottom is top 6 distinctive action sketches under three 

kinds of cluster numbers ( k = 5 , k = 10 , k = 15 ). 
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Fig. 7. Comparison of different pooling methods with varying parameter u on the KTH and UCF101 datasets when m = 20 . 
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Table 2 

The classification accuracies of different pooling methods and combination with IDT features on 

the KTH and UCF101 datasets. 

Average Every Max Min 

Sketch Comb. Sketch Comb. Sketch Comb. Sketch Comb. 

KTH 68.32% 92.66% 53.88% 94.58% 72.67% 92.66% 70.44% 92.66% 

UCF101 33.98% 83.53% 15.72% 83.59% 32.27% 83.85% 31.06% 83.09% 

Table 3 

Comparison between our method and IDT on the KTH and 

UCF101 datasets. 

IDT Ours Improvement 

KTH 91.55% 94.58% + 3.03% 

UCF101 split1 79.95% 81.14% + 1.19% 

split2 82.99% 85.14% + 2.15% 

split3 84.36% 85.26% + 0.90% 

Average 82.43% 83.85% + 1.42% 

Table 4 

The best parameters m and u selected for 

sketch pooling. 

KTH UCF101 

Split1 Split2 Split3 

m 11 10 18 20 

u 6 4 3 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

0.03

0.00

0.00

0.00

0.00

0.00

0.97

0.08

0.00

0.00

0.00

0.00

0.00

0.92

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.21

0.00

0.00

0.00

0.00

0.00

0.79

0.00

0.00

0.00

0.00

0.00

0.00

1.00

boxing

clapping

handwaving

jogging

running

walking

bo
xin

g

cla
pp

ing

ha
nd

wav
ing

jog
gin

g

ru
nn

ing

walk
ing

Fig. 8. The confusion matrix of KTH dataset. 

Table 5 

Comparison of the performance with state- 

of-the-art methods on UCF101 dataset. 

Accuracy 

Spatiotemporal CNN [50] 65.4% 

Bimodal encoding [51] 84.2% 

C3D(3 net) [52] 85.2% 

Two-stream CNN [53] 88.0% 

Factorized CNN [54] 88.1% 

Two-stream + LSTM [55] 88.6% 

TDD + IDT [56] 91.5% 

Two-stream fusion + IDT [57] 93.5% 

EMV CNN [48] 86.4% 

TSN [49] 94.8% 

Ours + EMV CNN 89.6% 

Ours + TSN 95.1% 

i  

c

 

m  

p  

b  

T  

a  

t  

m  

d  

d  

o  

T  
discovered. We can see that every pooling is the worst method for

action recognition. That is to say, it is very difficult to classify the

videos represented by one action sketch only. Other three pool-

ing methods achieve good performance on the KTH and UCF101

datasets. For a simple dataset like KTH, the variations of action

and backgrounds are very limited. It is possible to classify the ac-

tion videos through values with the maximum responses. But for

the UCF101 dataset, the situation is more complex. Average pooling

takes the mean value of top distinctive action sketches as the video

representation. It can minimize the negative effect of action varia-

tions. As the results shown, the max pooling and average pooling

get the highest accuracy on the two datasets respectively. It also

demonstrates that the top ranking action sketches are distinctive

for action recognition. 

Table 2 presents the performance of using different pooling

methods alone and gives the accuracies of combination with the

Fisher vector of IDT features on the KTH and UCF101 datasets.

We can see that the accuracies of action recognition are signifi-

cantly improved after the representation-level fusion. It is interest-

ing to note that the every pooling get a surprising higher perfor-

mance than the other pooling methods on the KTH dataset. For

the UCF101 dataset, the combination of max pooling based action

sketch and IDT features is the best choice for action recognition. 

6.5. Results of action recognition 

Table 3 shows the action classification accuracies of our method

and IDT. As can be seen, the combination of sketch pooling and

IDT leads to obvious performance gain. The average performance

improvements are 3.03% and 1.42% for KTH and UCF101 datasets

respectively. For the KTH dataset, the confusion matrix is shown

in Fig. 8 . We can see that boxing, jogging and walking are per-

fectly recognized. For the three splits of UCF101 datasets, we also

present the corresponding performance. As can be seen, the high-

est improvement 2.15% is achieved on the split2. Besides, Table 4

gives all the best parameters m and u selected for sketch pool-
ng on the two datasets. The results of two human action datasets

learly demonstrate the effectiveness of our method. 

We also show the comparison against several state-of-the-art

ethods of action recognition on UCF101 datasets. As a final ex-

eriment, we explore the performance of the proposed approach

y a late fusion with enhanced motion vector (EMV) CNN [48] and

emporal Segment Networks (TSN) [49] . To get the final output of

ction video, we simply plus the SVM scores of our method with

he predictions for each action class of EMV CNN and TSN. Further-

ore, the experiments above are conducted on the refined action

atasets as we have mentioned in Section 6.1 . For these videos that

o not exist in the refined dataset, we directly take the predictions

f EMV CNN and TSN as the final outputs. The results are shown in

able 5 . Combined with TSN, our method obtains the state-of-the-
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Table 6 

Runtime (seconds) of different phases on UCF101 

dataset. 

Sketch mining Sketch pooling Training Test 

14167 342 150 1.5 
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rt performance on UCF101 dataset (95.1%). Besides, we achieve

.2% performance improvement and get 89.6% compared to EMV

NN. It can be seen that our method can provide a significant com-

lementary for the approach based on convolution network. 

.6. Running cost 

The distinctive action sketch mining and pooling are the most

mportant parts of our method. It takes roughly 4 h for all videos

n the refined UCF101 dataset, excluding the time of feature extrac-

ion. Benefits from the linear SVM, the training time on one split

s only about 2.5 min while the test time can be negligible. The

xperiments are performed using Matlab 2014b on a server config-

red with 24 Intel Xeon E5645 CPU and 64 G of RAM. The detailed

unning time of different phases are listed in Table 6 . 

. Conclusion 

Along with the booming development in computer vision, there

s an increasing realization that sketch can be an essential ele-

ent for many realistic applications. Unlike many previous works

ocusing the representation of action sketch, we mainly explore the

vailable transformation from action to sketch. Before implementa-

ion of the specific method, we analyze the characteristics that ac-

ion sketch must meet and propose a reasonable framework of ac-

ion sketching. Given the sketches generated under this framework,

 distinctive ranking method is presented to mine the most repre-

entative sketches in action videos. After that, we perform sketch

ooling to obtain a new representation for action recognition. Ex-

erimental results demonstrate the effectiveness and excellent per-

ormance of our approach. 
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